23 research outputs found

    Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant

    Get PDF
    Semi-quantitative RT-PCR for tobacco VIGS lines of 13 knocked down TFs induced 2 h post oxalic acid treatment (20 mM) as compared to their WT and VIGS line with empty pTRV2 (V2) plants. Amplicon sizes of different genes and primers used are shown in Additional file 5: Table S3. The Nbactin gene was used as the house-keeping control. Gene codes refer to those indicated in Additional file 3: Table S2. (DOCX 684 kb

    Transcriptomic and metabolic responses of Calotropis procera to salt and drought stress

    Get PDF
    Background: Calotropis procera is a wild plant species in the family Apocynaceae that is able to grow in harsh, arid and heat stressed conditions. Understanding how this highly adapted plant persists in harsh environments should inform future efforts to improve the hardiness of crop and forage plant species. To study the plant response to droμght and osmotic stress, we treated plants with polyethylene glycol and NaCl and carried out transcriptomic and metabolomics measurements across a time-course of five days. Results: We identified a highly dynamic transcriptional response across the time-course including dramatic changes in inositol signaling, stress response genes and cytokinins. The resulting metabolome changes also involved sharp increases of myo-inositol, a key signaling molecule and elevated amino acid metabolites at later times. Conclusions: The data generated here provide a first glimpse at the expressed genome of C. procera, a plant that is exceptionally well adapted to arid environments. We demonstrate, through transcriptome and metabolome analysis that myo-inositol signaling is strongly induced in response to drought and salt stress and that there is elevation of amino acid concentrations after prolonged osmotic stress. This work should lay the foundations of future studies in adaptation to arid environments

    Effect of Integrated neuromuscular inhibition technique versus instrument assisted soft tissue mobilization on chronic mechanical neck pain

    No full text
    Background: Mechanical Neck Pain is considered one of the commonly known musculoskeletal conditions with active trigger points. It incorporates a great effect on economic productivity and becomes a major health problem. Purpose:  to compare the effect of integrated neuromuscular inhibition technique versus instrument assisted soft tissue mobilization in patients with chronic mechanical neck pain. Methods: 60 participants were randomly enrolled into three equal groups. Group A received a conventional physical therapy program, Group B received a conventional physical therapy program plus integrated neuromuscular inhibition technique, and Group C received a conventional physical therapy program plus instrument assisted soft tissue mobilization. The measurements were conducted using the Visual Analogue Scale, Cervical Range of Motion, Neck Disability Index and Pressure Algometer. Results: MANOVA test demonstrated a significant pain reduction in the three groups. Cervical ROM revealed that there was more improvement in group C. Neck disability index, there were no significant differences in improvement of three groups. Pain pressure threshold, there was more improvement in group C. Conclusion: Integrated Neuromuscular Inhibition Technique showed superiority than Instrument Assisted Soft Tissue Mobilization in improvements of pain intensity level, cervical ROM, neck disability level and pressure pain threshold in patients with chronic mechanical neck pain

    Additional file 7: Figure S4. of Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant

    No full text
    Oxalic acid-induced cell death after 24 h as visualized by Evans blue staining (a) and DNA laddering (b) in tobacco WT leaf discs. M = DNA standard (1 kb DNA ladder, Fisher Scientific). (DOCX 5915 kb

    Additional file 5: Table S3. of Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant

    No full text
    Tobacco TFs IDs (T1-T31) and primer names and sequences along with the expected amplicon sizes (bp) to be utilized in constructing pTRV2 vectors (blue boxes) for VIGS, in conducting semi-quantitative RT-PCR (orange boxes) or in both (green boxes). Information for amplifying selected tobacco TFs (T14, T15 and T24) via qRT-PCR (purple boxes) and information for amplifying selected tobacco PCD-related genes (G13, G15 and G18) and Arabidopsis TFs ARF109 (AtT14) and TFIID5 (AtTF24), either knocked out or over-expressed, via sqRT-PCR are shown. Gene codes refer to those indicated in Additional file 3: Table S2. (DOCX 28 kb

    Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    No full text
    Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged
    corecore